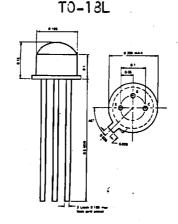

MAL100, A.B


NPN SILICON PHOTOTRANSISTOR

MAL 100, A, B are three terminal NPN silicon planar GENERAL DESCRIPTIONS: phototransistors. It features high illumination sensitivity, fast response time and low dark current. Besides, the availability of base lead also allows the circuit designer to optimise their design. It is intended for punched cards and paper tape reader, intrusion alarm sensor, position detector and optical tachometer.

ABSOLUTE MAXIMUM RATING

Continuous Power Dissipation @ $T_A = 25^{\circ}C$, Pmax (note 1 & 2) Continuous Power Dissipation @ $T_c = 25^{\circ}C$, Pmax (note 1 & 2) Continuous Collector Current, Ic max Collector-Base Voltage, VCBO (note 5) Collector-Emitter Sustaining Voltage, VCEO (note 3 & 5) Operating Junction Temperature Range, Tj Storage Temperature Range, Tstg Relative Humidity at Temperature

ELECTRICAL CHARACTERISTICS: (@ $T_A = 25^{\circ}C$ unless otherwise specified)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITIONS
Collector-Base Breakdown Voltage	BV _{CBO}	50	120		v	Ic = 100.4A (note 5)
Collector-Emitter Sustaining Voltage	$V_{CEO\ (sus)}$	30	50		$\mathbf{V}_{\mathbf{v}}$	$l_c = ImA$ (pulsed) (note 5)
Emitter-Collector Breakdown Voltage	BV _{ECO}		7		v	i _{EC =} 100-#A (note 5)
Collector Dark Current	I _{CBO}		0.25	25	nA	$V_{CB} = IOV$ (note 5)
Collector Dark Current	1 _{CBO}		0.025	0.5	۸w	$V_{CB} = 10V$ $T_A = 65^{\circ}C$ (note 5)
Collector Dark Current	ICEO		2	100	nA	$V_{ce} = 5V$ (note 5)
Responsivity (Tungsten)	R _{CBO}	0.6	1.6		.#A/m₩/cm²	V _{CB} = IOV (notes 3 & 8)
Responsivity (Ga As)	R _{CBO}	1.8	4.8		""A/mW/cm²	V _{CB} = 10V (notes 4 හි 8)
Photo Current (Tungsten)	ICE (L)					
MALIOO		0.2	1.4		mA	$V_{ce} = 5V$ H=5mW/cm ²
MALIOOA		1		3	mA	(notes 3 & 7)
MALIOOB		1.3		2.6	mA	
Photo Current (Ga As)	ICE (L)	0.6	4.2		mA	$V_{CE} = 5V$ H = 5mW/cm ² (notes 4 G 7)
Light Current Rise Time	ŧr		2.8		#sec	(note 6)
Light Current Fall Time	ft		2.8		.#sec	(note 6)
Collector-Emitter Saturation Voltage	$V_{CE(sat)}$		0.16	0.3	v	$I_c = 500.4 \text{ H} = 20 \text{ mW/cm}^2$

These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle Note 1: operations.

Note 2: These ratings give a maximum junction temperature of +85°C and junction to case thermal resistance of +300°C/W (derating factor of 3.33 mW/°C) and a junction to Ambient thermal resistance of + 600 °C/W (derating factor of 1.67 mW/°C)

Note 3: Measured at noted irradiance as emitted from a tungsten filament lamp at a colour temperature of 2854°K

Note 4: These are values obtained at noted irradiance as emitted from a GaAs source at 0.9#.

Note 5: Measured with radiation flux intensity of less than 0.14W/cm² over the spectrum from 100 to 1500 nm.

Rise time is defined as the time required for I_{CE} to rise from 10% to 90% of peak value. Fall time is defined as Note 6: the time required for I_{CE} to decrease from 90% to 10% of peak value. Test Conditions are: $I_{CE} = 4mA$, $V_{CE} = 5V$, $R_L = 100 \text{ ohm}$, GaAs source.

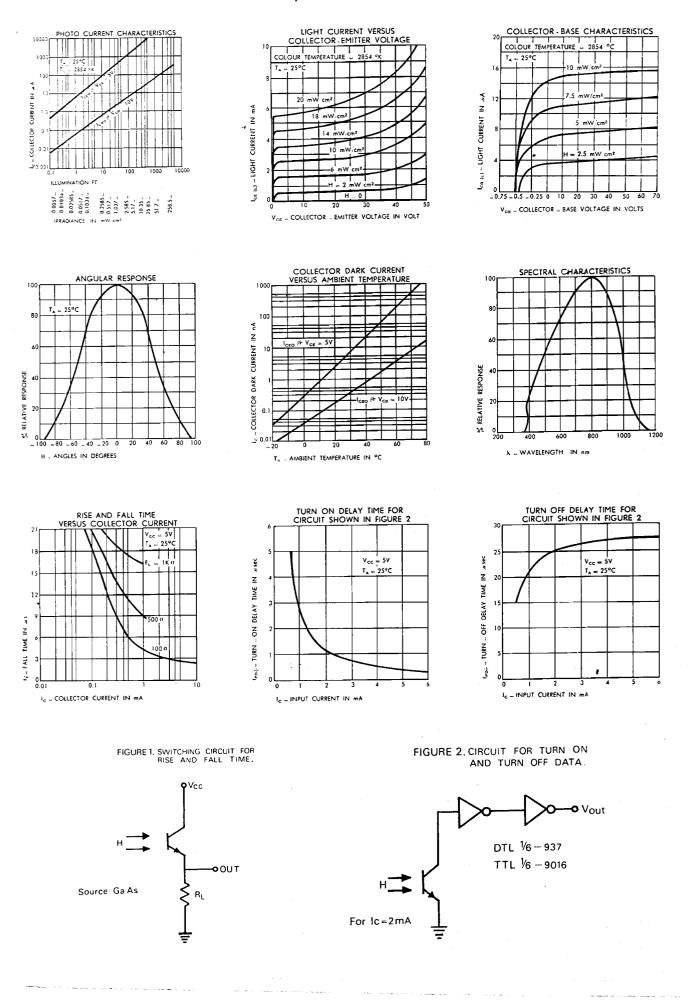
Note 7: No electrical connection to base lead.

No electrical connection to emitter lead. Note 8:

MICRO ELECTRONICS LTD. 美科有限公司

38 Hung To Road, Kwun Tong, Kowloon, Hong Kong. Cable: Microtron, Hong Kong. Telex: #3510 Micro HX.

FAX: 3-410321



.....

TYPICAL ELECTRICAL CHARACTERISTICS

...

MAL100, MAL100A, MAL100B

